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Abstract-Masonry is a composite material realized by the inclusion of bricks into the matrix of
mortar. In the present paper. a micromechanical approach for defining the properties of a periodic
masonry material is proposed. A damage model for old masonries is presented. In fact. it is assumed
that the damage is due to the coalescence and growth of the fractures only in the mortar. A repetitive
unit cell is chosen and eight possible undamaged and damaged states for the masonry are identified.
The homogenization theory for material with periodic microstructure is used to define the overall
moduli of the uncracked and cracked masonry. Variational formulations of the periodic problem
are given. A numerical procedure for the computation of the elastic properties of the undamaged
and damaged masonry material is developed. Then. the damage evolution of the masonry, which
accounts for the exact geometry and for the mechanical properties of the constituents of the
composite. is obtained. Energy and local strength criteria for the mortar are proposed. The behavior
of a typical masonry material is studied and the results are put in comparison with the ones available
in the literature. Finally, a simple structural application is developed.L 1997 Elsevier Science Ltd.

1. INTRODUCTION

Many historical buildings and monumental structures are made of masonry materiaL Hence
the analysis of the behavior of masonry structures has always received a great interest from
the scientific community.

Two different models, i.e., the continuous model and the discrete block model, have been
developed to capture the linear and nonlinear response of the masonry materiaL

One of the most used continuous model is the so-called no-tension materiaL According
to this model the masonry is indefinitely elastic in compression and cannot support tensile
stresses. The no-tension material has been proposed by Heyman (1966), who formulated a
theory for the limit analysis of masonry structures. The principal hypothesis is that the
tensile strength of the masonry is negligible with respect to the compression strength, and
therefore the collapse is generally achieved because of the fractures opening in traction. In
the last two decades the no-tension material has been the object of many researches
especially in Italy (Como and Grimaldi, 1985; Giaquinta and Giusti, 1985; Romano and
Sacco, 1987).

Monumental structures are mostly realized by superimposed blocks. The analysis of
these structures is carried out by schematizing the blocks as linear elastic, and the interfaces
governed by unilateral with Coulomb friction law. The study of the block structures have
been developed by adopting simplified analytical approaches, as for instance in Yim et al.
(1990), or in conjunction with the finite element method, e.g., Chiostrini and Vignoli (1989),
Grimaldi et af. (1992) and Lofti and Benson Shing (1994).

A full finite element analysis of a masonry wall which considers the actual micro
structure of the material would lead to a very expansive computational problem. In fact,
to discretize the mortar joints, a very fine mesh would be considered.

The masonry is a heterogeneous material composed by bricks and mortar disposed in
a regular or completely random arrangement. For the most important masonry con
structions the adopted material presents a very regular geometry at the microscale leveL In
fact, the bricks are joined by horizontal and vertical beds of mortar, and generate a periodic
microstructure. Hence. the regular masonry material is a periodic composite materiaL For
this reason, some micromechanical methods have been used in order to evaluate the
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constitutive relationship of the masonry. In particular, in Pande et al. (1989) and Kralj et
al. (1991) the Mori-Tanaka method and the lamination theory have been used in two steps:
initially, the Mori-Tanaka method is adopted to define a transition material obtained by
neglecting the presence of the horizontal beds of mortar then, the lamination theory is
employed for the full homogenization. By following a similar procedure, in Papa (1990)
the estimate of the overall moduli of the undamaged masonry has been obtained, and a
phenomenological method is employed to model the damage process of the composite
material. The two step homogenization procedure (i.e., the Mori-Tanaka method and the
lamination theory) have been adopted in Pietruszczak and Niu (1992) and in Gambarotta
and Lagomarsino (1994) to study the progressive failure of the structural masonry. Fur
thermore, the admissible limit surface in the stress space has been carried out in Alpa and
Monetto (1994) by schematizing the masonry as blocks in unilateral with friction contact
each others, and in De Felice (1994) by taking into account the cohesion between the bricks
and the progressive damage of the bricks. The in-plane overall elastic moduli of a masonry
have been derived in Anthoine (1995) from the linear elastic constitutive properties of the
bricks and the mortar by using the homogenization theory for periodic media in conjunction
with the finite element method.

In the present paper, a damage model for ancient masonry material characterized by
periodic structures is carried out from a micromechanical analysis. For old masonries the
strength of the mortar is lower than the strength of the bricks. Thus, it can be assumed that
fractures can develop only in the mortar material (Luciano and Sacco, 1995a). For the
periodic unit cell, all the possible states, characterized by different arrangements of cracks
in mortar, are identified. Then, for each state of the masonry the corresponding overall
moduli are evaluated by imposing periodic boundary conditions on the chosen unit cell.
Several variational formulations for media with periodic microstructure are presented. The
elastostatic problem, posed in terms of displacements, is approached via finite element
method, and new penalty finite elements are proposed in order to enforce on the unit cell
periodic boundary conditions. Two strength criteria for the mortar are considered: the first
one is based on the energy approach of the elastic fracture mechanics, while the second one
corresponds to the local cohesive Coulomb model. Then, the strain limit surfaces for a
given masonry material are obtained as function of the specific mechanical characteristics
of the mortar. The proposed methodology is implemented in a numerical code. An appli
cation for a particular unit cell is developed. The overall elastic moduli for the uncracked
and cracked considered material are obtained and compared with results available in
literature. The macroscopic limit strain surfaces are presented for both the microscopic
strength criteria adopted. Finally, a simple structural example is developed.

2. THE MICROMECHANICAL MODEL OF DAMAGE

Many approaches have been proposed in the literature in order to study the damage
process for composites (Talreja, 1987; Laws et al. 1983). In particular, the damage available
models can be divided in two categories: the phenomenological and the micromechanical
models.

In a phenomenological damage scheme the constitutive relationships of the material
are deduced only from experimental tests on the composite and, for this reason, many non
physical parameters are necessary to describe the complexity of the phenomenon.

In a micromechanical model the parameters governing the damage process have a
physical meaning as, for example, the dimensions, the shapes and the positions of the cracks
that characterize the actual damage in the material. Also, in this case, the number of the
damage coefficients are very high and for this reason some simplifying hypothesis is often
necessary in order to obtain an efficient model. The procedure necessary to define a
micromechanical damage model can be summarized in the following steps:

• definition of the geometry of a representative volume element (RVE),
• definition of a damage kinetic law,
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Fig. I. Repetitive unit cell for the regular masonry material.

• estimate of the global nonlinear behavior of the RVE by using a micromechanical
approach of homogenization.

Hence, as first step, the definition of an RVE is required. To this end, it can be noted
that the masonry is a composite medium characterized by a regular microstructure: bricks
are periodically distributed in the mortar. Consequently, a repetitive cell which encompasses
the geometry of the structure and the material properties can be determined. In this way,
instead of an RVE, a repetitive cell is employed for the study of the composite material.
The chosen unit cell, containing all the geometric and constitutive information on the
masonry, is shown in Fig. I, where each mortar joint is identified by a number. Note that
t is the mortar thickness, and sand h the brick sizes. It can be emphasized that the unit cell
given in Fig. 1 is not the smallest repetitive cell, but it is suitable for future developments,
due to its geometrical simplicity.

Moreover, the damage kinetic law for the material gives the rate of the damage, as
function of an evolution parameter (e.g., the time). In the following a damage kinetic law
'discrete' in the time domain is proposed. It is obtained by schematizing the damage process
by only a few possible damaged states of the material. In other words, a discrete damage
kinetic law is defined by a finite number of fixed damage configurations for the unit cell.
Each damaged state or configuration is characterized by a certain distribution of cracks or
voids. Furthermore, it is necessary to define the possible paths of damage, i.e., the evolution
from a state to another possible one. Obviously, a damage state evolves only to more
damaged states, i.e., with a greater number of cracks or voids. Hence, in a discrete damage
kinetic law, the constitutive relationship of the material is characterized by a finite number
of instantaneous moduli relative to the homogenized response of the unit cell characteristic
of all the possible damaged states.

The definition of the discrete damage kinetic law for the masonry arises from the
following assumptions:

• the cracks occur only in the mortar material which behaves in a perfect elastic-brittle
manner,

• the bricks are indefinitely elastic,
• the mortar thickness is small, so that the cracks can develop only vertically or

horizontally,
• when a fracture starts to develop, a full failure of a mortar junction is supposed, i.e.

the cracks grow until they reach the blocks.

It can be emphasized, that the proposed damage model captures the behaviour of
many masonries. In fact, especially for ancient structures, the tensile strength of the mortar
is often much lower than the strength of the bricks, and fractures grow mostly in the mortar.
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Fig. 2. Possible damaged states of old masonry material.

Table I. Possible damage paths

Path I Path 2 Path 3 Path 4 Path 5 Path 6

Sl SI Sl Sl SI SI
S2 S2 S5 S5 S7 S7
S3 S4 S3 S6 S4 S6
S8 S8 S8 S8 S8 S8

During the damage process the fractures should satisfy some simple geometric require
ments, In fact, since the unit cell is a repetitive element, then the crack in the joint number
I is always accompanied by the cracks in the joints numbers 4,5 and 8, Analogously, cracks
in the joint number 2 is always simultaneous to cracks in the joint 7 and crack in the joint
3 occurs with crack in the joint 6, According to these hypotheses, only eight states for the
masonry are possible, they are defined by the position of the cracks in the unit ceiL In Fig,
2, al the damaged states are schematically represented by indicating the fractures in the
mortar by bold lines. In that figure, SI denotes the undamaged state, and S4 and S5 indicate
the mirror states of S3 and S7, respectively, Note that, once the fracture is created, the
internal bonds of the mortar material disappear, and cannot be recovered anymore, As a
consequence, starting from SI the damage evolution can follow only six possible paths
shown in Table I, For instance, the unit cell, following the path number I, evolves from SI
to S2 then to S3 and finally to S8. Moreover, at each damaged state, the fractures can be
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in open or closed mode. In fact, in compression the fractures are closed and in tension they
are open. Consequently, several different situations are possible for each state.

At each damage state of the unit cell it is possible to associate characteristic overall
elastic moduli of the masonry material. In fact, the position of the cracks and their state
(open or closed) influences the elastic behavior of the unit cell. It is worth noting that the
response of the masonry can completely change during the damage process. In fact, the
eight states considered are characterized not only by different values of the overall moduli,
but also by different material symmetries, as it can be expected for the states S3, S4, S5 and
S7.

At this stage, the homogenization theory can be adopted to determine the characteristic
overall elastic moduli for each possible state of the masonry in order to define the nonlinear
constitutive law of the material.

3. THE HOMOGENIZATION TECHNIQUE

The estimate of the effective elastic moduli of an heterogeneous material can be
obtained by using different micromechanical methods (Mura, 1987; Aboudi, 1991). Most
of them do not take into account the geometry of the microstructure and the interactions
among the blocks are considered approximately. For example, the differential method, the
self-consistent or the generalized self-consistent approaches consider the interaction effects
by using an iterative numerical procedure; the Mori-Tanaka method adopts the Eshelby
solution of an ellipsoidal inclusion in an infinite medium; finally, the dilute scheme does
not consider at all the actual microstructure of the heterogeneous material. Further, it has
been proposed, by Aboudi, the so-called cell method, which has been extensively discussed
and applied to a large number of homogenization problems in the book by Aboudi (1991).
This method considers a simplified geometry of the unit cell and, furthermore, assumes a
special form for the displacement and stress fields, as emphasized in Teply and Reddy
(1991). Many of the micromechanical methods do not allow us to compute the stresses in
the composite material. In fact, often they only give the possibility of evaluating the average
stress in the matrix and in the inclusions and not the local stresses. Of course, this may
represent a limitation in the use of the homogenization techniques, especially when one is
interested in the definition of a micromechanical damage model.

Next, a description of the approach to the homogenization technique herein adopted
is given. Although some concepts of the proposed homogenization procedure are standard,
they are reported in order to make the paper self-consistent. The estimates on the overall
in-plane stiffnesses of the masonry are derived from the solution of the inclusion problem
characterized by the unit cell V shown in Fig. 1. The problem is treated in the framework
ofthe two-dimensional plain elasticity, and the effects of the transversal stresses (0'13' 0'23, 0'33)

in thickness of the masonry wall are not taken into account. On the other hand, the presence
of the transversal normal stress 0'33 in the masonry wall could be responsible for a reduction
of its in-plane compressive strength. In fact, as pointed out by Hilsdorf (1969), when the
wall is loaded by an in-plane compression, the different deformability of the bricks and the
mortar of a masonry wall induces tensile and compressive transversal stresses in the bricks
and in the mortar, respectively (Hilsdorf, 1969; Anthoine, 1995). Thus, the traction in the
thickness of the bricks could lead to a transversal failure mode of the wall. Since the damage
model proposed in the previous section does not consider at all a limited strength in
compression, the Hilsdorf effect is not taken into account, and then the two-dimensional
approach, although approximate, is consistent with the damage model.

The evaluation of the overall moduli passes throughout the determination of the plain
elastic state {u, 8, IT}, i.e., the displacement, strain and stress fields solution of the problem
governed by the following field equations for heterogeneous media in R2

:

divIT(x) = 0

8(X) = Vu(x)

~(X)8(X) = IT(x) (1)
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where x = (x I, X2)T is the position vector of the typical point of R2, V is the symmetric part
of the gradient operator, and '6'(x) is the fourth-order constitutive tensor, which is function
of the point Further, the elastic state {u, /l, G} must satisfy the periodicity and the average
condition on the strain. Therefore the displacement field must be represented in the fol
lowing way (excluding rigid motion) (Suquet, 1982; Anthoine, 1995):

(2)

where /l" is the assigned average strain tensor:

(3)

and Ii'(x) is the part of the displacement vector which is periodic in R2 with period V and
with average on V equal to zero. In Suquet (1982) it has been emphasized that this problem
is well posed and admits a unique solution,

The vector Ii'(x) and the tensors /lex) and G(x) defining the solution of the problem
governed by the eqns (I) and (2), are periodic with period V. As a consequence, they can
be regarded as the extension by periodicity in R 2 of the solution of a new problem posed
only in V. To formulate the problem only in V, it is necessary to define suitable boundary
conditions to impose on aV in such a way that the eqns (I) and (2) applied only in V, lead
to the restriction in V of the solution of the original elastostatic problem defined in all R2

(Sanchez-Hubert and Sanchez Palencia, 1992), At this aim, it is important to note that, on
aV, the solution of the problem posed in R2 satisfies the following conditions:

(a) G(a, x2)n(a, X2) = - G( - a, x2)n( - a, X2) 'v'x2 E [ - b, b]

(b) G(x 1 , b)n(x l , b) = -G(xj, -b)n(x l , -b) 'v'x i E [-a, a]

(a) Ii'(a, x 2) = Ii'( -a, X2) 'v'X2 E [-b, b]

(b) li'(xI,b) = w(xj, -b) 'v'x i E[-a,a]

(4)

(5)

which represent the equilibrium and the internal compatibility at the interfaces of adjacent
cells, respectively. Hence, the solution of the problem in Vmust satisfy the eqns (I) and (2)
and an opportune combination of the boundary conditions (4) and (5). In particular, it is
possible to consider boundary conditions only on the stress (i.e., (4a) and (4b)) or only on
the displacement (i.e., (5a) and (5b)), or mixed boundary conditions (i.e., (4a) and (5b) or
(4b) and (5a)). Further, in the next section it is proved that when the boundary conditions
(5) are used then the (4) are automatically satisfied. In summary, the problem admits a
position, traction or mixed boundary conditions. In the following sections only the dis
placement boundary conditions problem is developed.

Once the periodic elastostatic problem is solved, the components of the effective
constitutive tensor ~ satisfies the classical stress~strain relation for the two-dimensional
plane problem at hand, as:

(f"
'£1111 '£1122 '£1112 (,~,II

(f" '£1122 '£2222 '£2212 " (6)21 [,22

(f0 '£1112 '£2212 '£1212 U;212

where (f;'j indicates the component of the average on the unit cell of the local stress tensor
it, defined as :
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(7)

The constitutive linear elastic relation (6) is characterized by six constants which can
be determined by solving three elastostatic problems. In fact, the typical average strain
tensor can be decomposed as reported in the following formula:

(8)

where

The overall moduli are then computed as :

'1&'1111 = <O"W> '1&'1122 = <O"W> '1&'1112 = <O"W>

'1&'1122 = <O"W> '1&'2222 = <O"W> '1&'2212 = <0"\2l>

'1&'1112 = <O"W> '1&'2212 = <O"W> '1&'1212 = <O"W>

(9)

(10)

where a(k) represents the local stress tensor in the unit cell due to the average strain tensor
ji(k).

It can be emphasized that the elastostatic problem to solve is not very simple. In fact,
difficulties arise in the correct impositions of the conditions (4) and (5), which ensure the
periodicity and the continuity of the field variables.

Since the damage evolution ofthe unit cell is characterized by eight states, it is necessary
to derive the corresponding stiffness matrices. At this aim, the previous procedure is applied,
and hence, from the solutions of three elastostatic problems for each state, the estimates
on the effective elastic moduli of the masonry are derived.

4. BOUNDARY CONDITIONS ON THE DISPLACEMENT FIELD

The aim of this section is the definition of suitable boundary conditions to impose on
the displacement variable which condense the eqns (2) and (5). These boundary conditions,
associated to the field eqns (I), lead to the solution of the original periodic elastostatic
problem.

4.1. Periodic boundary conditions
It can be noted that, in order to ensure the continuity of the displacement field between

adjacent cells, the conditions (5) are to be satisfied. By taking into account eqn (2), the
relations (5) become:

u(a,x2)-u(-a'X2)-8° {~} = ° \fX2E[-b,b]

u(x l , b) -u(x], -b) _&0 {20b} = ° \fXI E [-a, a]. (11 )

The eqns (11) implicitly ensure that the average strain associated to u is exactly 8", as
required by the relation (3).
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4.2. Linear boundary conditions
The displacement condition may be imposed on the boundary av of the unit cell V,

according to the formula:

u(x) = BOX on av. (12)

The boundary condition (12) is stronger than the ones expressed by the eqns (11) ; in fact,
not only does it satisfy the periodicity requirement (2), and hence (5), but it assigns also
the value of the displacement along all the boundary.

4.3. Special cases
From considerations on the symmetries of both the geometry of the unit cell and the

imposed average strain, in some case it is possible to define the boundary conditions
ensuring the exact evaluation of some elasticity constant, i.e., satisfying both the conditions
(4) and (5). In fact, except for the states S3, S4, S5 and S7, and for the evaluation of the
shear modulus for all the possible states, the elasticity components ~Illl and ~1122 can be
estimated exactly by assuming the following boundary conditions:

Xl = -a XI =a X2 = -b X 2 = b

UI = 0 2a

0 0
(13)

U2 =

0"12 = 0 0 0 0

while the constants ~ 1122 and ~2222 can be obtained by assuming the following boundary
conditions:

XI = -a Xl =a X2 = -b X2 =b

UI = 0 0

0 2b
(14)

U2 =

0"12 = 0 0 0 0

where 2a = s+t and b = h+t.

5. THE NUMERICAL PROCEDURE

As emphasized in Sections 3 and 4, for the evaluation of the overall moduli for all the
possible states of the masonry material, several boundary value problems are to be solved.
In order to develop numerical procedures for solving the set of elastostatic problems above
defined, different variational formulations are presented.

Initially, it is proved that, if the boundary conditions (11) are imposed, the conditions
(4) are automatically satisfied, as announced in Section 3. To this end, the Hu-Washizu
functional is introduced. For the special problem under consideration with the boundary
condition (I 1) treated as a constraint, the Hu-Washizu functional assumes the form (Wash
izu, 1976):
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where A(a) and Alh) are the Lagrange multipliers associated to the constraints (11). The
stationary conditions for A with respect to nand Il lead to the compatibility and the
constitutive eqns (I)z and (I h, respectively. The stationary conditions for A with respect to
A(a) and A(h) lead to the constraint eqns (11). The stationary condition with respect to u leads
to:

Note that this equation carries the equilibrium field eqn (I)j, and further it allows to
determine the values of the Lagrange multipliers as:

[no]<, ~ _a+A(a) = 0

[noL2~h-A(b) = 0

(17)

The mechanical meaning of the A's clearly appears. They represent the stress at interface
between two adjacent cells. Thus, because of the relations (17), it is proved that when the
constraint (11) is imposed in the variational formulation, the equations (4) are automatically
satisfied. Finally, it can be concluded that the stationary conditions for the functional (15)
are equivalent to all the equations governing the original elastostatic problem posed in V.

Now, let the boundary condition (12) be considered. In this case, the constrained Hu
Washizu functional turns out to be:

where" is the Lagrange multiplier of the constraint (12). The stationary conditions for A
with respect to nand Il yield the eqns (1)z and (1h, respectively. The stationary condition
for Awith respect to" yields the constraints equation (12). Finally, the stationary condition
for Awith respect to u leads to:

-f <5u' div n dx] dX2 +f [<5u '(no-,,)] ds = O.
V ?V

(19)

It gives the equilibrium eqn (1)], and allows to determine the values of the Lagrange
multipliers as the stress on the boundary of the cell. Contrarily to the previous case, when
the constraint (11) is enforced, by employing the functional (18), the eqns (4) could not be
satisfied.



3200 R. Luciano and E. Sacco

From a computational point of view the approach via the Lagrangian mixed functional
is not very effective, because of the high number of unknown functions involved. Hence, a
full displacement formulation appears suitable. By satisfying the eqns (1)2 and (I h and by
enforcing the constraint (11) via penalty method, the functional (15) gives the penalized
potential energy:

which is the potential energy augmented by two penalty terms corresponding to the bound
ary conditions (11). The quantity K in formula (20) is the penalty parameter, which should
assume a very high value to well enforce the desired boundary conditions. Because of eqn
(2), the penalized potential energy (20) can be rewritten as function of only the periodic
part of the displacement field u"(x). In this case, the functionalrrP is determined as:

(21)

The stationary condition for the functionals (20) and (21) gives the total displacement u or
the periodic displacement uP, approximate solutions of the periodic elastostatic problem.

The discretization of the penalized potential energies (20) and (21) involves the defi
nition of new penalty elements, which are very important because they contain the boundary
information. Note that the average strain condition is contained in the penalty terms for
the functional (20) and, as emphasized above, in the strain energy term for the functional
(21). In the first case, the imposed strain average is regarded as contact distributed forces
on the boundary of the unit cell, in the latter case the effect of eO corresponds to assigned
body forces.

6. THE STRENGTH OF THE MASONRY

In this section, two macroscopic damage laws for the homogenized material are
deduced from the micromechanical approach. They are based on the strength of the mortar
material. In fact, as specified in Section 2, the only constituent of the composite which is
responsible for the damage is the mortar.

During the application of the external loading on the masonry structure, the typical
point is subjected to a stress and strain evolution. As a consequence, the unit cell, which
represents in the microscale the point of the macroscale, also undergoes to a deformation
process, which can induce the coalescence and the growth of fractures. Further, note that
the mean strain e" and the mean stress (10 in the unit cell, are the actual strain and stress in
the point of the macroscale.

6.1. The energy criterion
By applying the concepts of the elastic fracture mechanics, a crack in the unit cell

grows if its strain energy release rate per unit of area is equal to greater than the limit
Griffith G energy per unit of area, in other words:
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Table 2. Crack sizes I for the possible damage paths

320l

Path 1&2

3h+61
1+1

s+1

Path 3 & 5

S+I

3h+61
S+I

Path 4 & 6

s+t
s+t

3h+6t

d
r = - dIOl/(I) < G there is not crack growth

d
r = - d/l/(l) ~ G there is crack growth (22)

where 1measures the total length of the fractures in the actual state and 1/(1) is the density
(fracture) strain energy of the unit cell. On the base of the possible cracked states presented
in Section 2, a simplified approach based on the fracture mechanics is developed. In practice,
the energy release rate is computed by substituting to the derivative of the strain energy,
the incremental ratio of the strain energy. Hence the crack growth criterion becomes:

)1/ (I + /).1) - 0l/ (I)
r = - /).1 < G there is not crack growth

4/(l+ /),/) - 0l/(I)
r = - M ~ G there is crack growth (23)

where the increment of the crack propagation M can be determined from the difference
between the length 1of the fracture in the actual state and the one in the next possible state.
Hence, in Table 2 the values of the size of the crack growth are given for the six possible
paths of damage proposed in Section 2.

The fracture strain energy of the unit cell per unit of area is assumed as the elastic
energy associated to the part of the strain responsible for the crack growth (Luciano and
Sacco, 1995a). As a matter offact, if the unit cell is subjected to a biaxial average compressive
strain state, then the fracture does not occur. On the contrary, for an elongation in the X I 

direction, the cell could pass from the initial state Sl to S2. From a mechanical point of
view, it can be assumed that the positive normal strains e~ 1and e'~2 acting along the XI- and
x2-directions, respectively, could induce fracture growth. Further, it can be supposed that
also the shear strain e'; 2 could be responsible for fracture openings. In those hypotheses,
the choice for the fracture strain energy, associated to a dimension 1of the crack state, is
the following:

(24)

where eO+ is obtained from the strain tensor eO by neglecting the negative part of the
components e'; 1 and S~2' Explicitly, it is:

[eO S'{2 ]
ife';1 > 0 and S~2 > 0 eO+ = II

SO SO12 22

[eo e~2 ]ile'; 1 > 0 and eS2 ~ 0 eO+ = 11
SO12

eO+ = [~ () ]ife'( I ~ 0 and e~2 ~ 0 S~2 . (25)
e12
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Note that the constitutive stiffness matrix 1!(l) contained the overall moduli of the actual
damage state carried out by following the procedure developed in Section 5.

6.2. The cohesive Coulomb criterion
According to formula (8), the local stress tensor in a typical point of the cell is given

by:

(26)

In particular, by using eqn (26), it is possible to compute the stress state at the middle point
of each mortar layer, previously singled out by the numbers from I to 8, as shown in Fig.
I. At each mortar joint the crack opening depends on the values of the normal (In and
tangential r stresses. The normal stress is (In = (J22 for horizontal mortar joints and (In = (J1l

for vertical mortar joints, while the tangential stress is always given by r = (J!2' Of course,
the normal and the tangential stresses are computed in the middle point of the joints where
there is not yet crack. Furthermore, as pointed out in Section 2, symmetry considerations
allow to say:

(Jij(P 1 ) = (J;j(P4 ) = (Ji;(P S ) = (Ji;CP S )

(Jij(P2 ) = (J;;(P7 )

(Jij(P3) = (J,;(P6 ) (27)

where Pi indicates the middle point of the ith mortar layer. It can be emphasized that PI
has coordinates: XI = 0, X 2 = a. As consequence of the identities (27), it is sufficient to
compute the tangential and normal stresses at only three points in the cell, say at PI, P2

and P 3 .

From the value of the stresses ((Jm r), it is possible to determine, by means of a local
limit strength criterion, which one of the mortar layer reaches the limit state, and hence
where the new crack opening is localized. Of course, it is fundamental the choice of a local
limit strength criterion. The very simple cohesive Coulomb criterion is considered herein,
which states that a couple ((Jm r) is strictly admissible if it satisfies the relationships:

(28)

where 11 is the friction coefficient and c is the cohesive stress of the mortar. Because of the
relation (26), the limit surface, i.e., the set of couples ((In, r) satisfying eqns (28) in the limit
sense, is obtained as the internal envelope of the following equations:

Ilc = e'~ I (± r( I) (P;) + 1l(J~I) (P;))

+ e~2 (± r(2) (P;) + 1l(J;,2) (Pi))

+ e'~ 2 (± r(3) (P;) + 1l(J~3) (P;))

(29)

Finally, the eqns (29) in the strain space spanned by (e'; j,e~2 ,e'; 2) furnish the macro
scopic limit deformation surface.

7. MATERIAL AND STRUCTURAL APPLICATIONS

Next, the proposed procedure is applied by using the finite element method in order
to determine the material behavior and to develop a simple structural application. The unit
cell considered is characterized by the following dimensions: h = 75 mm, s = 225 mm and
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Table 3. Elastic moduli for the undamaged masonry

Moduli (MPa) C lI ]] C2222

Boundary conditions (II) 8942 5595
Boundary conditions (\2) 10.029 5944
Boundary conditions (13)-(\4) 8942 5600
Solution in Kralj et al. (1991) 8242 5593
Lower bound in Luciano (\995) 8665 5643
Upper bound in Luciano (\995) 10,165 6655

3203

CII22 C12 "

1578 1562
1743 2061
1580
1504 1521
1600 1521
3081 1952

Table 4. Overall elastic moduli for undamaged and damaged states

Moduli (MPa) SI S2 S3 S4 S5 S6 S7 S8

Cilil 8942 2761 1203 1203 8398 7967 8398 0
C2222 5595 5329 381 381 1343 0 1343 0
el212 1562 1326 654 654 838 0 838 0
el122 1578 630 677 677 530 0 530 0
C lI ]2 0 0 887 -887 -386 0 386 0
C2212 0 0 499 -499 -202 0 202 0

-0.0006 -0.0004 -0.0002 0

-0.0015

SI2

SI7

SIS

SI7
SIS

Fig. 3. Limit surface for the state SI. when e" = O. obtained by using the energy criterion.

t = 15 mm (see Fig. 1). The matrix (m) and the blocks (b) are isotropic with elastic moduli:
Eh = 15,000 MPa, Vh = 0.25, Em = 1000 MPa, and Vm= 0.3. These values are equal to the
ones adopted in Kralj et al. (1991). The plain strain elastostatic analysis of the unit cell is
carried out by using a finite element program and a mesh with 6932 isoparametric four
node elements. Further, the boundary conditions on the displacement defined in Section 4,
are adopted.

First, the state S1 is analyzed and the corresponding elastic moduli are estimated by
adopting the boundary conditions defined by eqns (11) or the ones given in (12), (13) and
(14). In Table 3, they are put in comparison with the results obtained in Kralj et al. (1991)
and with the bounds proposed by Luciano (1995). It can be emphasized the good agreement
of the numerical results obtained.

Successively, all the possible states are studied by solving the problem of the stationary
for the functional (20), which accounts for the boundary conditions (11) via penalization.
The results obtained are given in Table 4.

Once the elastic moduli for each state are known, the proposed energy criterion is
a.pplied to the case under consideration. In the following, the limit energy G = 0.007 MPa
is taken. The limit surfaces relative to the damage evolution from the state Sl to the states
52, S5 and 87 are represented for the case £22 = 0 in Fig. 3 and for the case £~ 1 = 0 in Fig.
t Then, the limit surfaces relative to the damage evolution of the state S2 to the states S3
md S4 are reported for £22 = 0 in Fig. 5 and for e22 = 0.0002 in Fig. 6. From the analysis
)f Figs 3-6, the effective limit surface for the possible damage evolution from state 81 or
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812 t~2

0.0015

0.0010
S17

-0.0006 -0.0004 -0.0002 0

-0.0010

-0.0015

812
Fig. 4. Limit surface for the state Sl, when Ell = 0, obtained by using the energy criterion.

-0.0006 -0.0004 -0.0002

.----- S23

-0.0015
S24

Fig. 5. Limit surface for the state S2, when E'2 = 0, obtained by using the energy criterion.

S23

'------ S24
Fig. 6. Limit surface for the state S2, when e'2 = 0.0002, obtained by using the energy criterion.

S2 clearly appears as the internal envelope of the curves S12, S15 and S17 or the internal
envelope of the curves S23 and S24. Note that with Sij it is denoted the limit surface from
the state Si to the state Sj.

Then, the local cohesive Coulomb criterion is employed. The friction coefficient and
the cohesion strength of the mortar are assumed, J1 = 2 and c = 225 MPa, respectively. For
the considered problem, the values of the stresses for all the possible state of the masonry
are given in Tables 5, 6 and 7 at the points PJ, P2 and P3• Analogously to the results
presented when the damage energy criterion is adopted, also for the cohesive local criterion
the limit surfaces relative to the damage evolution from the state Sl to the states S2, S5
and S7 are plotted for the case B~2 = 0 in Fig. 7 and for the case B~ I = 0 in Fig. 8. Then,
the limit surfaces relative to the damage evolution of the state S2 to the states S3 and S4
are reported for B~2 = 0 in Fig. 9 and for B~2 = 0.0002 in Fig. 10. The effective limit surface
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Table 5. Stresses in the points P" P, and P, due to the average strain tensor tIl)

Stresses (MPa) SI S2 S3 S4 S5 S6 S7 S8

un(PI ) 9113 0 0 0 9260 9520 9260 0
T(Ptl 0 0 0 0 163 0 -163 0
un(P,) 1248 340 0 880 452 0 0 0
T(P,) -960 -2050 0 -1830 -995 0 0 0
un(p)) 1248 340 880 0 0 0 452 0
rep)) 960 2050 1830 0 0 0 995 0

Table 6. Stresses in the points P" P, and p) due to the average strain tensor t 121

Stresses (MPa) SI S2 S3 S4 S5 S6 S7 S8

un(p\) 927 0 0 0 4 0 4 0
T(P,) 0 0 0 0 1690 0 -1690 0
un(P,) 5818 5670 0 495 1854 0 0 0
reP,) -77 -231 0 -1034 -446 0 0 0
un(Pj ) 5818 5670 495 0 0 0 1854 0
T(P)) 77 231 1034 0 0 0 446 0

Table 7. Stresses in the points P" P, and P, due to the average strain tensor t l
))

Stresses (MPa) SI S2 S3 S4 S5 S6 S7 S8

un(P,) 0 0 0 0 885 0 -885 0
reP,) 1580 0 0 0 1020 0 1020 0
un(P,) -483 -874 0 -1320 -583 0 0 0
T(P,) 3070 2696 0 2750 3240 0 0 0
un(p)) 483 874 1320 0 0 0 583 0
rep)) 3070 2696 2750 0 0 0 3240 0

517

-0.0006 -0.0004 -0.0002

517

512

515

Fig. 7. Limit surface for the state SI, when E'" = 0, obtained by using the cohesive local criterion.

for the possible damage evolution from state S1 or from the state 52 clearly appears as the
internal envelope of the presented curves.

Finally, a structural application is developed. It consists in the masonry wall repre
sented in Fig. 11, subjected to a uniformly distributed vertical load q = 220 kN/m and to
an increasing horizontal displacement u at each point of the top. The dimensions of the
wall are: L = 5 m and H = 6 m. The material properties corresponding to the cohesive
Coulomb criterion previously carried out, are adopted. The numerical procedure developed
for solving the nonlinear problem governed by the described discrete damage evolution law
is presented in Luciano and Sacco (l995b). In Fig. 12 the plot of the values of the total
horizontal force F acting on the top of the wall vs u, is given. The brittle behavior of the
structure can be noted. Furthermore, in Fig. 11 the distribution of the masonry states is



3206 R. Luciano and E. Sacco

815

'---- 817

Fig. 8. Limit surface for the state SI. when s', I = 0, obtained by using the cohesive local criterion.

823
0.004

0.002 824

-{).<IDi -o.(JOO4 -0.0002 0
~

-0.002
823

-0.004

824
Fig. 9. Limit surface for the state S2, when 822 = O. obtained by using the cohesive local criterion.

~~
0.004

823
0.002

-0.0006 -0. efl
-0.002

824
-0.004

Fig. 10. Limit surface for the state S2. when £~2 = 0.0002, obtained by using the cohesive local
criterion.

reported when the applied displacement is UA (see Fig. 12). The opening of horizontal
fractures is due to the bending of the wall.

8. CONCLUSIONS

A discretized damage model for the masonry material has been obtained by solving
the micro-macro problem, i.e., the macromechanical damage model has been determined
by using the micromechanics and the homogenization theory. The damage model obtained
appears simple and able to capture the behavior of many regular masonry materials.

Variational formulations have been presented. In particular, the Hu-Washizu func
tionals for the two possible boundary conditions on the unit cell have been reported. By
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Fig. II. Masonry wall subjected to a vertical distributed load q and to a horizontal displacement u

on the top.

(MN)

1.20

1.00

F 0.80

0.60

0.40

0.20
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Fig. 12. Total horizontal force Facting on the top of the wall vs the applied displacement u.

means of the Hu-Washizu formulation, it has been proved that, by imposing the continuity
of the periodic part ofthe displacement, the continuity of the stress is automatically satisfied.
Then, a handy penalty displacement formulation has been presented, and its finite element
implementation has been developed.

Two strength criteria for the mortar have been adopted. Since the procedure proposed
allows to determine the whole elastic state in the unit cell, it can be emphasized that any
other type of local strength criterion can be adopted in the model. The effectiveness of the
proposed damage model has been tested by developing a simple structural application.
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